Categorical data¶
This is an introduction to pandas categorical data type, including a short comparison
with R’s factor
.
Categoricals
are a pandas data type corresponding to categorical variables in
statistics. A categorical variable takes on a limited, and usually fixed,
number of possible values (categories
; levels
in R). Examples are gender,
social class, blood type, country affiliation, observation time or rating via
Likert scales.
In contrast to statistical categorical variables, categorical data might have an order (e.g. ‘strongly agree’ vs ‘agree’ or ‘first observation’ vs. ‘second observation’), but numerical operations (additions, divisions, …) are not possible.
All values of categorical data are either in categories
or np.nan
. Order is defined by
the order of categories
, not lexical order of the values. Internally, the data structure
consists of a categories
array and an integer array of codes
which point to the real value in
the categories
array.
The categorical data type is useful in the following cases:
A string variable consisting of only a few different values. Converting such a string variable to a categorical variable will save some memory, see here.
The lexical order of a variable is not the same as the logical order (“one”, “two”, “three”). By converting to a categorical and specifying an order on the categories, sorting and min/max will use the logical order instead of the lexical order, see here.
As a signal to other Python libraries that this column should be treated as a categorical variable (e.g. to use suitable statistical methods or plot types).
See also the API docs on categoricals.
Object creation¶
Series creation¶
Categorical Series
or columns in a DataFrame
can be created in several ways:
By specifying dtype="category"
when constructing a Series
:
In [1]: s = pd.Series(["a", "b", "c", "a"], dtype="category")
In [2]: s
Out[2]:
0 a
1 b
2 c
3 a
dtype: category
Categories (3, object): ['a', 'b', 'c']
By converting an existing Series
or column to a category
dtype:
In [3]: df = pd.DataFrame({"A": ["a", "b", "c", "a"]})
In [4]: df["B"] = df["A"].astype("category")
In [5]: df
Out[5]:
A B
0 a a
1 b b
2 c c
3 a a
By using special functions, such as cut()
, which groups data into
discrete bins. See the example on tiling in the docs.
In [6]: df = pd.DataFrame({"value": np.random.randint(0, 100, 20)})
In [7]: labels = ["{0} - {1}".format(i, i + 9) for i in range(0, 100, 10)]
In [8]: df["group"] = pd.cut(df.value, range(0, 105, 10), right=False, labels=labels)
In [9]: df.head(10)
Out[9]:
value group
0 65 60 - 69
1 49 40 - 49
2 56 50 - 59
3 43 40 - 49
4 43 40 - 49
5 91 90 - 99
6 32 30 - 39
7 87 80 - 89
8 36 30 - 39
9 8 0 - 9
By passing a pandas.Categorical
object to a Series
or assigning it to a DataFrame
.
In [10]: raw_cat = pd.Categorical(
....: ["a", "b", "c", "a"], categories=["b", "c", "d"], ordered=False
....: )
....:
In [11]: s = pd.Series(raw_cat)
In [12]: s
Out[12]:
0 NaN
1 b
2 c
3 NaN
dtype: category
Categories (3, object): ['b', 'c', 'd']
In [13]: df = pd.DataFrame({"A": ["a", "b", "c", "a"]})
In [14]: df["B"] = raw_cat
In [15]: df
Out[15]:
A B
0 a NaN
1 b b
2 c c
3 a NaN
Categorical data has a specific category
dtype:
In [16]: df.dtypes
Out[16]:
A object
B category
dtype: object
DataFrame creation¶
Similar to the previous section where a single column was converted to categorical, all columns in a
DataFrame
can be batch converted to categorical either during or after construction.
This can be done during construction by specifying dtype="category"
in the DataFrame
constructor:
In [17]: df = pd.DataFrame({"A": list("abca"), "B": list("bccd")}, dtype="category")
In [18]: df.dtypes
Out[18]:
A category
B category
dtype: object
Note that the categories present in each column differ; the conversion is done column by column, so only labels present in a given column are categories:
In [19]: df["A"]
Out[19]:
0 a
1 b
2 c
3 a
Name: A, dtype: category
Categories (3, object): ['a', 'b', 'c']
In [20]: df["B"]
Out[20]:
0 b
1 c
2 c
3 d
Name: B, dtype: category
Categories (3, object): ['b', 'c', 'd']
Analogously, all columns in an existing DataFrame
can be batch converted using DataFrame.astype()
:
In [21]: df = pd.DataFrame({"A": list("abca"), "B": list("bccd")})
In [22]: df_cat = df.astype("category")
In [23]: df_cat.dtypes
Out[23]:
A category
B category
dtype: object
This conversion is likewise done column by column:
In [24]: df_cat["A"]
Out[24]:
0 a
1 b
2 c
3 a
Name: A, dtype: category
Categories (3, object): ['a', 'b', 'c']
In [25]: df_cat["B"]
Out[25]:
0 b
1 c
2 c
3 d
Name: B, dtype: category
Categories (3, object): ['b', 'c', 'd']
Controlling behavior¶
In the examples above where we passed dtype='category'
, we used the default
behavior:
Categories are inferred from the data.
Categories are unordered.
To control those behaviors, instead of passing 'category'
, use an instance
of CategoricalDtype
.
In [26]: from pandas.api.types import CategoricalDtype
In [27]: s = pd.Series(["a", "b", "c", "a"])
In [28]: cat_type = CategoricalDtype(categories=["b", "c", "d"], ordered=True)
In [29]: s_cat = s.astype(cat_type)
In [30]: s_cat
Out[30]:
0 NaN
1 b
2 c
3 NaN
dtype: category
Categories (3, object): ['b' < 'c' < 'd']
Similarly, a CategoricalDtype
can be used with a DataFrame
to ensure that categories
are consistent among all columns.
In [31]: from pandas.api.types import CategoricalDtype
In [32]: df = pd.DataFrame({"A": list("abca"), "B": list("bccd")})
In [33]: cat_type = CategoricalDtype(categories=list("abcd"), ordered=True)
In [34]: df_cat = df.astype(cat_type)
In [35]: df_cat["A"]
Out[35]:
0 a
1 b
2 c
3 a
Name: A, dtype: category
Categories (4, object): ['a' < 'b' < 'c' < 'd']
In [36]: df_cat["B"]
Out[36]:
0 b
1 c
2 c
3 d
Name: B, dtype: category
Categories (4, object): ['a' < 'b' < 'c' < 'd']
Note
To perform table-wise conversion, where all labels in the entire DataFrame
are used as
categories for each column, the categories
parameter can be determined programmatically by
categories = pd.unique(df.to_numpy().ravel())
.
If you already have codes
and categories
, you can use the
from_codes()
constructor to save the factorize step
during normal constructor mode:
In [37]: splitter = np.random.choice([0, 1], 5, p=[0.5, 0.5])
In [38]: s = pd.Series(pd.Categorical.from_codes(splitter, categories=["train", "test"]))
Regaining original data¶
To get back to the original Series
or NumPy array, use
Series.astype(original_dtype)
or np.asarray(categorical)
:
In [39]: s = pd.Series(["a", "b", "c", "a"])
In [40]: s
Out[40]:
0 a
1 b
2 c
3 a
dtype: object
In [41]: s2 = s.astype("category")
In [42]: s2
Out[42]:
0 a
1 b
2 c
3 a
dtype: category
Categories (3, object): ['a', 'b', 'c']
In [43]: s2.astype(str)
Out[43]:
0 a
1 b
2 c
3 a
dtype: object
In [44]: np.asarray(s2)
Out[44]: array(['a', 'b', 'c', 'a'], dtype=object)
Note
In contrast to R’s factor
function, categorical data is not converting input values to
strings; categories will end up the same data type as the original values.
Note
In contrast to R’s factor
function, there is currently no way to assign/change labels at
creation time. Use categories
to change the categories after creation time.
CategoricalDtype¶
A categorical’s type is fully described by
categories
: a sequence of unique values and no missing valuesordered
: a boolean
This information can be stored in a CategoricalDtype
.
The categories
argument is optional, which implies that the actual categories
should be inferred from whatever is present in the data when the
pandas.Categorical
is created. The categories are assumed to be unordered
by default.
In [45]: from pandas.api.types import CategoricalDtype
In [46]: CategoricalDtype(["a", "b", "c"])
Out[46]: CategoricalDtype(categories=['a', 'b', 'c'], ordered=False)
In [47]: CategoricalDtype(["a", "b", "c"], ordered=True)
Out[47]: CategoricalDtype(categories=['a', 'b', 'c'], ordered=True)
In [48]: CategoricalDtype()
Out[48]: CategoricalDtype(categories=None, ordered=False)
A CategoricalDtype
can be used in any place pandas
expects a dtype
. For example pandas.read_csv()
,
pandas.DataFrame.astype()
, or in the Series
constructor.
Note
As a convenience, you can use the string 'category'
in place of a
CategoricalDtype
when you want the default behavior of
the categories being unordered, and equal to the set values present in the
array. In other words, dtype='category'
is equivalent to
dtype=CategoricalDtype()
.
Equality semantics¶
Two instances of CategoricalDtype
compare equal
whenever they have the same categories and order. When comparing two
unordered categoricals, the order of the categories
is not considered.
In [49]: c1 = CategoricalDtype(["a", "b", "c"], ordered=False)
# Equal, since order is not considered when ordered=False
In [50]: c1 == CategoricalDtype(["b", "c", "a"], ordered=False)
Out[50]: True
# Unequal, since the second CategoricalDtype is ordered
In [51]: c1 == CategoricalDtype(["a", "b", "c"], ordered=True)
Out[51]: False
All instances of CategoricalDtype
compare equal to the string 'category'
.
In [52]: c1 == "category"
Out[52]: True
Warning
Since dtype='category'
is essentially CategoricalDtype(None, False)
,
and since all instances CategoricalDtype
compare equal to 'category'
,
all instances of CategoricalDtype
compare equal to a
CategoricalDtype(None, False)
, regardless of categories
or
ordered
.
Description¶
Using describe()
on categorical data will produce similar
output to a Series
or DataFrame
of type string
.
In [53]: cat = pd.Categorical(["a", "c", "c", np.nan], categories=["b", "a", "c"])
In [54]: df = pd.DataFrame({"cat": cat, "s": ["a", "c", "c", np.nan]})
In [55]: df.describe()
Out[55]:
cat s
count 3 3
unique 2 2
top c c
freq 2 2
In [56]: df["cat"].describe()
Out[56]:
count 3
unique 2
top c
freq 2
Name: cat, dtype: object
Working with categories¶
Categorical data has a categories
and a ordered
property, which list their
possible values and whether the ordering matters or not. These properties are
exposed as s.cat.categories
and s.cat.ordered
. If you don’t manually
specify categories and ordering, they are inferred from the passed arguments.
In [57]: s = pd.Series(["a", "b", "c", "a"], dtype="category")
In [58]: s.cat.categories
Out[58]: Index(['a', 'b', 'c'], dtype='object')
In [59]: s.cat.ordered
Out[59]: False
It’s also possible to pass in the categories in a specific order:
In [60]: s = pd.Series(pd.Categorical(["a", "b", "c", "a"], categories=["c", "b", "a"]))
In [61]: s.cat.categories
Out[61]: Index(['c', 'b', 'a'], dtype='object')
In [62]: s.cat.ordered
Out[62]: False
Note
New categorical data are not automatically ordered. You must explicitly
pass ordered=True
to indicate an ordered Categorical
.
Note
The result of unique()
is not always the same as Series.cat.categories
,
because Series.unique()
has a couple of guarantees, namely that it returns categories
in the order of appearance, and it only includes values that are actually present.
In [63]: s = pd.Series(list("babc")).astype(CategoricalDtype(list("abcd")))
In [64]: s
Out[64]:
0 b
1 a
2 b
3 c
dtype: category
Categories (4, object): ['a', 'b', 'c', 'd']
# categories
In [65]: s.cat.categories
Out[65]: Index(['a', 'b', 'c', 'd'], dtype='object')
# uniques
In [66]: s.unique()
Out[66]:
['b', 'a', 'c']
Categories (4, object): ['a', 'b', 'c', 'd']
Renaming categories¶
Renaming categories is done by assigning new values to the
Series.cat.categories
property or by using the
rename_categories()
method:
In [67]: s = pd.Series(["a", "b", "c", "a"], dtype="category")
In [68]: s
Out[68]:
0 a
1 b
2 c
3 a
dtype: category
Categories (3, object): ['a', 'b', 'c']
In [69]: s.cat.categories = ["Group %s" % g for g in s.cat.categories]
In [70]: s
Out[70]:
0 Group a
1 Group b
2 Group c
3 Group a
dtype: category
Categories (3, object): ['Group a', 'Group b', 'Group c']
In [71]: s = s.cat.rename_categories([1, 2, 3])
In [72]: s
Out[72]:
0 1
1 2
2 3
3 1
dtype: category
Categories (3, int64): [1, 2, 3]
# You can also pass a dict-like object to map the renaming
In [73]: s = s.cat.rename_categories({1: "x", 2: "y", 3: "z"})
In [74]: s
Out[74]:
0 x
1 y
2 z
3 x
dtype: category
Categories (3, object): ['x', 'y', 'z']
Note
In contrast to R’s factor
, categorical data can have categories of other types than string.
Note
Be aware that assigning new categories is an inplace operation, while most other operations
under Series.cat
per default return a new Series
of dtype category
.
Categories must be unique or a ValueError
is raised:
In [75]: try:
....: s.cat.categories = [1, 1, 1]
....: except ValueError as e:
....: print("ValueError:", str(e))
....:
ValueError: Categorical categories must be unique
Categories must also not be NaN
or a ValueError
is raised:
In [76]: try:
....: s.cat.categories = [1, 2, np.nan]
....: except ValueError as e:
....: print("ValueError:", str(e))
....:
ValueError: Categorical categories cannot be null
Appending new categories¶
Appending categories can be done by using the
add_categories()
method:
In [77]: s = s.cat.add_categories([4])
In [78]: s.cat.categories
Out[78]: Index(['x', 'y', 'z', 4], dtype='object')
In [79]: s
Out[79]:
0 x
1 y
2 z
3 x
dtype: category
Categories (4, object): ['x', 'y', 'z', 4]
Removing categories¶
Removing categories can be done by using the
remove_categories()
method. Values which are removed
are replaced by np.nan
.:
In [80]: s = s.cat.remove_categories([4])
In [81]: s
Out[81]:
0 x
1 y
2 z
3 x
dtype: category
Categories (3, object): ['x', 'y', 'z']
Removing unused categories¶
Removing unused categories can also be done:
In [82]: s = pd.Series(pd.Categorical(["a", "b", "a"], categories=["a", "b", "c", "d"]))
In [83]: s
Out[83]:
0 a
1 b
2 a
dtype: category
Categories (4, object): ['a', 'b', 'c', 'd']
In [84]: s.cat.remove_unused_categories()
Out[84]:
0 a
1 b
2 a
dtype: category
Categories (2, object): ['a', 'b']
Setting categories¶
If you want to do remove and add new categories in one step (which has some
speed advantage), or simply set the categories to a predefined scale,
use set_categories()
.
In [85]: s = pd.Series(["one", "two", "four", "-"], dtype="category")
In [86]: s
Out[86]:
0 one
1 two
2 four
3 -
dtype: category
Categories (4, object): ['-', 'four', 'one', 'two']
In [87]: s = s.cat.set_categories(["one", "two", "three", "four"])
In [88]: s
Out[88]:
0 one
1 two
2 four
3 NaN
dtype: category
Categories (4, object): ['one', 'two', 'three', 'four']
Note
Be aware that Categorical.set_categories()
cannot know whether some category is omitted
intentionally or because it is misspelled or (under Python3) due to a type difference (e.g.,
NumPy S1 dtype and Python strings). This can result in surprising behaviour!
Sorting and order¶
If categorical data is ordered (s.cat.ordered == True
), then the order of the categories has a
meaning and certain operations are possible. If the categorical is unordered, .min()/.max()
will raise a TypeError
.
In [89]: s = pd.Series(pd.Categorical(["a", "b", "c", "a"], ordered=False))
In [90]: s.sort_values(inplace=True)
In [91]: s = pd.Series(["a", "b", "c", "a"]).astype(CategoricalDtype(ordered=True))
In [92]: s.sort_values(inplace=True)
In [93]: s
Out[93]:
0 a
3 a
1 b
2 c
dtype: category
Categories (3, object): ['a' < 'b' < 'c']
In [94]: s.min(), s.max()
Out[94]: ('a', 'c')
You can set categorical data to be ordered by using as_ordered()
or unordered by using as_unordered()
. These will by
default return a new object.
In [95]: s.cat.as_ordered()
Out[95]:
0 a
3 a
1 b
2 c
dtype: category
Categories (3, object): ['a' < 'b' < 'c']
In [96]: s.cat.as_unordered()
Out[96]:
0 a
3 a
1 b
2 c
dtype: category
Categories (3, object): ['a', 'b', 'c']
Sorting will use the order defined by categories, not any lexical order present on the data type. This is even true for strings and numeric data:
In [97]: s = pd.Series([1, 2, 3, 1], dtype="category")
In [98]: s = s.cat.set_categories([2, 3, 1], ordered=True)
In [99]: s
Out[99]:
0 1
1 2
2 3
3 1
dtype: category
Categories (3, int64): [2 < 3 < 1]
In [100]: s.sort_values(inplace=True)
In [101]: s
Out[101]:
1 2
2 3
0 1
3 1
dtype: category
Categories (3, int64): [2 < 3 < 1]
In [102]: s.min(), s.max()
Out[102]: (2, 1)
Reordering¶
Reordering the categories is possible via the Categorical.reorder_categories()
and
the Categorical.set_categories()
methods. For Categorical.reorder_categories()
, all
old categories must be included in the new categories and no new categories are allowed. This will
necessarily make the sort order the same as the categories order.
In [103]: s = pd.Series([1, 2, 3, 1], dtype="category")
In [104]: s = s.cat.reorder_categories([2, 3, 1], ordered=True)
In [105]: s
Out[105]:
0 1
1 2
2 3
3 1
dtype: category
Categories (3, int64): [2 < 3 < 1]
In [106]: s.sort_values(inplace=True)
In [107]: s
Out[107]:
1 2
2 3
0 1
3 1
dtype: category
Categories (3, int64): [2 < 3 < 1]
In [108]: s.min(), s.max()
Out[108]: (2, 1)
Note
Note the difference between assigning new categories and reordering the categories: the first
renames categories and therefore the individual values in the Series
, but if the first
position was sorted last, the renamed value will still be sorted last. Reordering means that the
way values are sorted is different afterwards, but not that individual values in the
Series
are changed.
Note
If the Categorical
is not ordered, Series.min()
and Series.max()
will raise
TypeError
. Numeric operations like +
, -
, *
, /
and operations based on them
(e.g. Series.median()
, which would need to compute the mean between two values if the length
of an array is even) do not work and raise a TypeError
.
Multi column sorting¶
A categorical dtyped column will participate in a multi-column sort in a similar manner to other columns.
The ordering of the categorical is determined by the categories
of that column.
In [109]: dfs = pd.DataFrame(
.....: {
.....: "A": pd.Categorical(
.....: list("bbeebbaa"),
.....: categories=["e", "a", "b"],
.....: ordered=True,
.....: ),
.....: "B": [1, 2, 1, 2, 2, 1, 2, 1],
.....: }
.....: )
.....:
In [110]: dfs.sort_values(by=["A", "B"])
Out[110]:
A B
2 e 1
3 e 2
7 a 1
6 a 2
0 b 1
5 b 1
1 b 2
4 b 2
Reordering the categories
changes a future sort.
In [111]: dfs["A"] = dfs["A"].cat.reorder_categories(["a", "b", "e"])
In [112]: dfs.sort_values(by=["A", "B"])
Out[112]:
A B
7 a 1
6 a 2
0 b 1
5 b 1
1 b 2
4 b 2
2 e 1
3 e 2
Comparisons¶
Comparing categorical data with other objects is possible in three cases:
Comparing equality (
==
and!=
) to a list-like object (list, Series, array, …) of the same length as the categorical data.All comparisons (
==
,!=
,>
,>=
,<
, and<=
) of categorical data to another categorical Series, whenordered==True
and thecategories
are the same.All comparisons of a categorical data to a scalar.
All other comparisons, especially “non-equality” comparisons of two categoricals with different
categories or a categorical with any list-like object, will raise a TypeError
.
Note
Any “non-equality” comparisons of categorical data with a Series
, np.array
, list
or
categorical data with different categories or ordering will raise a TypeError
because custom
categories ordering could be interpreted in two ways: one with taking into account the
ordering and one without.
In [113]: cat = pd.Series([1, 2, 3]).astype(CategoricalDtype([3, 2, 1], ordered=True))
In [114]: cat_base = pd.Series([2, 2, 2]).astype(CategoricalDtype([3, 2, 1], ordered=True))
In [115]: cat_base2 = pd.Series([2, 2, 2]).astype(CategoricalDtype(ordered=True))
In [116]: cat
Out[116]:
0 1
1 2
2 3
dtype: category
Categories (3, int64): [3 < 2 < 1]
In [117]: cat_base
Out[117]:
0 2
1 2
2 2
dtype: category
Categories (3, int64): [3 < 2 < 1]
In [118]: cat_base2
Out[118]:
0 2
1 2
2 2
dtype: category
Categories (1, int64): [2]
Comparing to a categorical with the same categories and ordering or to a scalar works:
In [119]: cat > cat_base
Out[119]:
0 True
1 False
2 False
dtype: bool
In [120]: cat > 2
Out[120]:
0 True
1 False
2 False
dtype: bool
Equality comparisons work with any list-like object of same length and scalars:
In [121]: cat == cat_base
Out[121]:
0 False
1 True
2 False
dtype: bool
In [122]: cat == np.array([1, 2, 3])
Out[122]:
0 True
1 True
2 True
dtype: bool
In [123]: cat == 2
Out[123]:
0 False
1 True
2 False
dtype: bool
This doesn’t work because the categories are not the same:
In [124]: try:
.....: cat > cat_base2
.....: except TypeError as e:
.....: print("TypeError:", str(e))
.....:
TypeError: Categoricals can only be compared if 'categories' are the same.
If you want to do a “non-equality” comparison of a categorical series with a list-like object which is not categorical data, you need to be explicit and convert the categorical data back to the original values:
In [125]: base = np.array([1, 2, 3])
In [126]: try:
.....: cat > base
.....: except TypeError as e:
.....: print("TypeError:", str(e))
.....:
TypeError: Cannot compare a Categorical for op __gt__ with type <class 'numpy.ndarray'>.
If you want to compare values, use 'np.asarray(cat) <op> other'.
In [127]: np.asarray(cat) > base
Out[127]: array([False, False, False])
When you compare two unordered categoricals with the same categories, the order is not considered:
In [128]: c1 = pd.Categorical(["a", "b"], categories=["a", "b"], ordered=False)
In [129]: c2 = pd.Categorical(["a", "b"], categories=["b", "a"], ordered=False)
In [130]: c1 == c2
Out[130]: array([ True, True])
Operations¶
Apart from Series.min()
, Series.max()
and Series.mode()
, the
following operations are possible with categorical data:
Series
methods like Series.value_counts()
will use all categories,
even if some categories are not present in the data:
In [131]: s = pd.Series(pd.Categorical(["a", "b", "c", "c"], categories=["c", "a", "b", "d"]))
In [132]: s.value_counts()
Out[132]:
c 2
a 1
b 1
d 0
dtype: int64
DataFrame
methods like DataFrame.sum()
also show “unused” categories.
In [133]: columns = pd.Categorical(
.....: ["One", "One", "Two"], categories=["One", "Two", "Three"], ordered=True
.....: )
.....:
In [134]: df = pd.DataFrame(
.....: data=[[1, 2, 3], [4, 5, 6]],
.....: columns=pd.MultiIndex.from_arrays([["A", "B", "B"], columns]),
.....: )
.....:
In [135]: df.groupby(axis=1, level=1).sum()
Out[135]:
One Two Three
0 3 3 0
1 9 6 0
Groupby will also show “unused” categories:
In [136]: cats = pd.Categorical(
.....: ["a", "b", "b", "b", "c", "c", "c"], categories=["a", "b", "c", "d"]
.....: )
.....:
In [137]: df = pd.DataFrame({"cats": cats, "values": [1, 2, 2, 2, 3, 4, 5]})
In [138]: df.groupby("cats").mean()
Out[138]:
values
cats
a 1.0
b 2.0
c 4.0
d NaN
In [139]: cats2 = pd.Categorical(["a", "a", "b", "b"], categories=["a", "b", "c"])
In [140]: df2 = pd.DataFrame(
.....: {
.....: "cats": cats2,
.....: "B": ["c", "d", "c", "d"],
.....: "values": [1, 2, 3, 4],
.....: }
.....: )
.....:
In [141]: df2.groupby(["cats", "B"]).mean()
Out[141]:
values
cats B
a c 1.0
d 2.0
b c 3.0
d 4.0
c c NaN
d NaN
Pivot tables:
In [142]: raw_cat = pd.Categorical(["a", "a", "b", "b"], categories=["a", "b", "c"])
In [143]: df = pd.DataFrame({"A": raw_cat, "B": ["c", "d", "c", "d"], "values": [1, 2, 3, 4]})
In [144]: pd.pivot_table(df, values="values", index=["A", "B"])
Out[144]:
values
A B
a c 1
d 2
b c 3
d 4
Data munging¶
The optimized pandas data access methods .loc
, .iloc
, .at
, and .iat
,
work as normal. The only difference is the return type (for getting) and
that only values already in categories
can be assigned.
Getting¶
If the slicing operation returns either a DataFrame
or a column of type
Series
, the category
dtype is preserved.
In [145]: idx = pd.Index(["h", "i", "j", "k", "l", "m", "n"])
In [146]: cats = pd.Series(["a", "b", "b", "b", "c", "c", "c"], dtype="category", index=idx)
In [147]: values = [1, 2, 2, 2, 3, 4, 5]
In [148]: df = pd.DataFrame({"cats": cats, "values": values}, index=idx)
In [149]: df.iloc[2:4, :]
Out[149]:
cats values
j b 2
k b 2
In [150]: df.iloc[2:4, :].dtypes
Out[150]:
cats category
values int64
dtype: object
In [151]: df.loc["h":"j", "cats"]
Out[151]:
h a
i b
j b
Name: cats, dtype: category
Categories (3, object): ['a', 'b', 'c']
In [152]: df[df["cats"] == "b"]
Out[152]:
cats values
i b 2
j b 2
k b 2
An example where the category type is not preserved is if you take one single
row: the resulting Series
is of dtype object
:
# get the complete "h" row as a Series
In [153]: df.loc["h", :]
Out[153]:
cats a
values 1
Name: h, dtype: object
Returning a single item from categorical data will also return the value, not a categorical of length “1”.
In [154]: df.iat[0, 0]
Out[154]: 'a'
In [155]: df["cats"].cat.categories = ["x", "y", "z"]
In [156]: df.at["h", "cats"] # returns a string
Out[156]: 'x'
Note
The is in contrast to R’s factor
function, where factor(c(1,2,3))[1]
returns a single value factor
.
To get a single value Series
of type category
, you pass in a list with
a single value:
In [157]: df.loc[["h"], "cats"]
Out[157]:
h x
Name: cats, dtype: category
Categories (3, object): ['x', 'y', 'z']
String and datetime accessors¶
The accessors .dt
and .str
will work if the s.cat.categories
are of
an appropriate type:
In [158]: str_s = pd.Series(list("aabb"))
In [159]: str_cat = str_s.astype("category")
In [160]: str_cat
Out[160]:
0 a
1 a
2 b
3 b
dtype: category
Categories (2, object): ['a', 'b']
In [161]: str_cat.str.contains("a")
Out[161]:
0 True
1 True
2 False
3 False
dtype: bool
In [162]: date_s = pd.Series(pd.date_range("1/1/2015", periods=5))
In [163]: date_cat = date_s.astype("category")
In [164]: date_cat
Out[164]:
0 2015-01-01
1 2015-01-02
2 2015-01-03
3 2015-01-04
4 2015-01-05
dtype: category
Categories (5, datetime64[ns]): [2015-01-01, 2015-01-02, 2015-01-03, 2015-01-04, 2015-01-05]
In [165]: date_cat.dt.day
Out[165]:
0 1
1 2
2 3
3 4
4 5
dtype: int64
Note
The returned Series
(or DataFrame
) is of the same type as if you used the
.str.<method>
/ .dt.<method>
on a Series
of that type (and not of
type category
!).
That means, that the returned values from methods and properties on the accessors of a
Series
and the returned values from methods and properties on the accessors of this
Series
transformed to one of type category
will be equal:
In [166]: ret_s = str_s.str.contains("a")
In [167]: ret_cat = str_cat.str.contains("a")
In [168]: ret_s.dtype == ret_cat.dtype
Out[168]: True
In [169]: ret_s == ret_cat
Out[169]:
0 True
1 True
2 True
3 True
dtype: bool
Note
The work is done on the categories
and then a new Series
is constructed. This has
some performance implication if you have a Series
of type string, where lots of elements
are repeated (i.e. the number of unique elements in the Series
is a lot smaller than the
length of the Series
). In this case it can be faster to convert the original Series
to one of type category
and use .str.<method>
or .dt.<property>
on that.
Setting¶
Setting values in a categorical column (or Series
) works as long as the
value is included in the categories
:
In [170]: idx = pd.Index(["h", "i", "j", "k", "l", "m", "n"])
In [171]: cats = pd.Categorical(["a", "a", "a", "a", "a", "a", "a"], categories=["a", "b"])
In [172]: values = [1, 1, 1, 1, 1, 1, 1]
In [173]: df = pd.DataFrame({"cats": cats, "values": values}, index=idx)
In [174]: df.iloc[2:4, :] = [["b", 2], ["b", 2]]
In [175]: df
Out[175]:
cats values
h a 1
i a 1
j b 2
k b 2
l a 1
m a 1
n a 1
In [176]: try:
.....: df.iloc[2:4, :] = [["c", 3], ["c", 3]]
.....: except ValueError as e:
.....: print("ValueError:", str(e))
.....:
ValueError: Cannot setitem on a Categorical with a new category, set the categories first
Setting values by assigning categorical data will also check that the categories
match:
In [177]: df.loc["j":"k", "cats"] = pd.Categorical(["a", "a"], categories=["a", "b"])
In [178]: df
Out[178]:
cats values
h a 1
i a 1
j a 2
k a 2
l a 1
m a 1
n a 1
In [179]: try:
.....: df.loc["j":"k", "cats"] = pd.Categorical(["b", "b"], categories=["a", "b", "c"])
.....: except ValueError as e:
.....: print("ValueError:", str(e))
.....:
ValueError: Cannot set a Categorical with another, without identical categories
Assigning a Categorical
to parts of a column of other types will use the values:
In [180]: df = pd.DataFrame({"a": [1, 1, 1, 1, 1], "b": ["a", "a", "a", "a", "a"]})
In [181]: df.loc[1:2, "a"] = pd.Categorical(["b", "b"], categories=["a", "b"])
In [182]: df.loc[2:3, "b"] = pd.Categorical(["b", "b"], categories=["a", "b"])
In [183]: df
Out[183]:
a b
0 1 a
1 b a
2 b b
3 1 b
4 1 a
In [184]: df.dtypes
Out[184]:
a object
b object
dtype: object
Merging / concatenation¶
By default, combining Series
or DataFrames
which contain the same
categories results in category
dtype, otherwise results will depend on the
dtype of the underlying categories. Merges that result in non-categorical
dtypes will likely have higher memory usage. Use .astype
or
union_categoricals
to ensure category
results.
In [185]: from pandas.api.types import union_categoricals
# same categories
In [186]: s1 = pd.Series(["a", "b"], dtype="category")
In [187]: s2 = pd.Series(["a", "b", "a"], dtype="category")
In [188]: pd.concat([s1, s2])
Out[188]:
0 a
1 b
0 a
1 b
2 a
dtype: category
Categories (2, object): ['a', 'b']
# different categories
In [189]: s3 = pd.Series(["b", "c"], dtype="category")
In [190]: pd.concat([s1, s3])
Out[190]:
0 a
1 b
0 b
1 c
dtype: object
# Output dtype is inferred based on categories values
In [191]: int_cats = pd.Series([1, 2], dtype="category")
In [192]: float_cats = pd.Series([3.0, 4.0], dtype="category")
In [193]: pd.concat([int_cats, float_cats])
Out[193]:
0 1.0
1 2.0
0 3.0
1 4.0
dtype: float64
In [194]: pd.concat([s1, s3]).astype("category")
Out[194]:
0 a
1 b
0 b
1 c
dtype: category
Categories (3, object): ['a', 'b', 'c']
In [195]: union_categoricals([s1.array, s3.array])
Out[195]:
['a', 'b', 'b', 'c']
Categories (3, object): ['a', 'b', 'c']
The following table summarizes the results of merging Categoricals
:
arg1 |
arg2 |
identical |
result |
---|---|---|---|
category |
category |
True |
category |
category (object) |
category (object) |
False |
object (dtype is inferred) |
category (int) |
category (float) |
False |
float (dtype is inferred) |
See also the section on merge dtypes for notes about preserving merge dtypes and performance.
Unioning¶
If you want to combine categoricals that do not necessarily have the same
categories, the union_categoricals()
function will
combine a list-like of categoricals. The new categories will be the union of
the categories being combined.
In [196]: from pandas.api.types import union_categoricals
In [197]: a = pd.Categorical(["b", "c"])
In [198]: b = pd.Categorical(["a", "b"])
In [199]: union_categoricals([a, b])
Out[199]:
['b', 'c', 'a', 'b']
Categories (3, object): ['b', 'c', 'a']
By default, the resulting categories will be ordered as
they appear in the data. If you want the categories to
be lexsorted, use sort_categories=True
argument.
In [200]: union_categoricals([a, b], sort_categories=True)
Out[200]:
['b', 'c', 'a', 'b']
Categories (3, object): ['a', 'b', 'c']
union_categoricals
also works with the “easy” case of combining two
categoricals of the same categories and order information
(e.g. what you could also append
for).
In [201]: a = pd.Categorical(["a", "b"], ordered=True)
In [202]: b = pd.Categorical(["a", "b", "a"], ordered=True)
In [203]: union_categoricals([a, b])
Out[203]:
['a', 'b', 'a', 'b', 'a']
Categories (2, object): ['a' < 'b']
The below raises TypeError
because the categories are ordered and not identical.
In [1]: a = pd.Categorical(["a", "b"], ordered=True)
In [2]: b = pd.Categorical(["a", "b", "c"], ordered=True)
In [3]: union_categoricals([a, b])
Out[3]:
TypeError: to union ordered Categoricals, all categories must be the same
Ordered categoricals with different categories or orderings can be combined by
using the ignore_ordered=True
argument.
In [204]: a = pd.Categorical(["a", "b", "c"], ordered=True)
In [205]: b = pd.Categorical(["c", "b", "a"], ordered=True)
In [206]: union_categoricals([a, b], ignore_order=True)
Out[206]:
['a', 'b', 'c', 'c', 'b', 'a']
Categories (3, object): ['a', 'b', 'c']
union_categoricals()
also works with a
CategoricalIndex
, or Series
containing categorical data, but note that
the resulting array will always be a plain Categorical
:
In [207]: a = pd.Series(["b", "c"], dtype="category")
In [208]: b = pd.Series(["a", "b"], dtype="category")
In [209]: union_categoricals([a, b])
Out[209]:
['b', 'c', 'a', 'b']
Categories (3, object): ['b', 'c', 'a']
Note
union_categoricals
may recode the integer codes for categories
when combining categoricals. This is likely what you want,
but if you are relying on the exact numbering of the categories, be
aware.
In [210]: c1 = pd.Categorical(["b", "c"])
In [211]: c2 = pd.Categorical(["a", "b"])
In [212]: c1
Out[212]:
['b', 'c']
Categories (2, object): ['b', 'c']
# "b" is coded to 0
In [213]: c1.codes
Out[213]: array([0, 1], dtype=int8)
In [214]: c2
Out[214]:
['a', 'b']
Categories (2, object): ['a', 'b']
# "b" is coded to 1
In [215]: c2.codes
Out[215]: array([0, 1], dtype=int8)
In [216]: c = union_categoricals([c1, c2])
In [217]: c
Out[217]:
['b', 'c', 'a', 'b']
Categories (3, object): ['b', 'c', 'a']
# "b" is coded to 0 throughout, same as c1, different from c2
In [218]: c.codes
Out[218]: array([0, 1, 2, 0], dtype=int8)
Getting data in/out¶
You can write data that contains category
dtypes to a HDFStore
.
See here for an example and caveats.
It is also possible to write data to and reading data from Stata format files. See here for an example and caveats.
Writing to a CSV file will convert the data, effectively removing any information about the
categorical (categories and ordering). So if you read back the CSV file you have to convert the
relevant columns back to category
and assign the right categories and categories ordering.
In [219]: import io
In [220]: s = pd.Series(pd.Categorical(["a", "b", "b", "a", "a", "d"]))
# rename the categories
In [221]: s.cat.categories = ["very good", "good", "bad"]
# reorder the categories and add missing categories
In [222]: s = s.cat.set_categories(["very bad", "bad", "medium", "good", "very good"])
In [223]: df = pd.DataFrame({"cats": s, "vals": [1, 2, 3, 4, 5, 6]})
In [224]: csv = io.StringIO()
In [225]: df.to_csv(csv)
In [226]: df2 = pd.read_csv(io.StringIO(csv.getvalue()))
In [227]: df2.dtypes
Out[227]:
Unnamed: 0 int64
cats object
vals int64
dtype: object
In [228]: df2["cats"]
Out[228]:
0 very good
1 good
2 good
3 very good
4 very good
5 bad
Name: cats, dtype: object
# Redo the category
In [229]: df2["cats"] = df2["cats"].astype("category")
In [230]: df2["cats"].cat.set_categories(
.....: ["very bad", "bad", "medium", "good", "very good"], inplace=True
.....: )
.....:
In [231]: df2.dtypes
Out[231]:
Unnamed: 0 int64
cats category
vals int64
dtype: object
In [232]: df2["cats"]
Out[232]:
0 very good
1 good
2 good
3 very good
4 very good
5 bad
Name: cats, dtype: category
Categories (5, object): ['very bad', 'bad', 'medium', 'good', 'very good']
The same holds for writing to a SQL database with to_sql
.
Missing data¶
pandas primarily uses the value np.nan
to represent missing data. It is by
default not included in computations. See the Missing Data section.
Missing values should not be included in the Categorical’s categories
,
only in the values
.
Instead, it is understood that NaN is different, and is always a possibility.
When working with the Categorical’s codes
, missing values will always have
a code of -1
.
In [233]: s = pd.Series(["a", "b", np.nan, "a"], dtype="category")
# only two categories
In [234]: s
Out[234]:
0 a
1 b
2 NaN
3 a
dtype: category
Categories (2, object): ['a', 'b']
In [235]: s.cat.codes
Out[235]:
0 0
1 1
2 -1
3 0
dtype: int8
Methods for working with missing data, e.g. isna()
, fillna()
,
dropna()
, all work normally:
In [236]: s = pd.Series(["a", "b", np.nan], dtype="category")
In [237]: s
Out[237]:
0 a
1 b
2 NaN
dtype: category
Categories (2, object): ['a', 'b']
In [238]: pd.isna(s)
Out[238]:
0 False
1 False
2 True
dtype: bool
In [239]: s.fillna("a")
Out[239]:
0 a
1 b
2 a
dtype: category
Categories (2, object): ['a', 'b']
Differences to R’s factor
¶
The following differences to R’s factor functions can be observed:
R’s
levels
are namedcategories
.R’s
levels
are always of type string, whilecategories
in pandas can be of any dtype.It’s not possible to specify labels at creation time. Use
s.cat.rename_categories(new_labels)
afterwards.In contrast to R’s
factor
function, using categorical data as the sole input to create a new categorical series will not remove unused categories but create a new categorical series which is equal to the passed in one!R allows for missing values to be included in its
levels
(pandas’categories
). pandas does not allowNaN
categories, but missing values can still be in thevalues
.
Gotchas¶
Memory usage¶
The memory usage of a Categorical
is proportional to the number of categories plus the length of the data. In contrast,
an object
dtype is a constant times the length of the data.
In [240]: s = pd.Series(["foo", "bar"] * 1000)
# object dtype
In [241]: s.nbytes
Out[241]: 16000
# category dtype
In [242]: s.astype("category").nbytes
Out[242]: 2016
Note
If the number of categories approaches the length of the data, the Categorical
will use nearly the same or
more memory than an equivalent object
dtype representation.
In [243]: s = pd.Series(["foo%04d" % i for i in range(2000)])
# object dtype
In [244]: s.nbytes
Out[244]: 16000
# category dtype
In [245]: s.astype("category").nbytes
Out[245]: 20000
Categorical
is not a numpy
array¶
Currently, categorical data and the underlying Categorical
is implemented as a Python
object and not as a low-level NumPy array dtype. This leads to some problems.
NumPy itself doesn’t know about the new dtype
:
In [246]: try:
.....: np.dtype("category")
.....: except TypeError as e:
.....: print("TypeError:", str(e))
.....:
TypeError: data type 'category' not understood
In [247]: dtype = pd.Categorical(["a"]).dtype
In [248]: try:
.....: np.dtype(dtype)
.....: except TypeError as e:
.....: print("TypeError:", str(e))
.....:
TypeError: Cannot interpret 'CategoricalDtype(categories=['a'], ordered=False)' as a data type
Dtype comparisons work:
In [249]: dtype == np.str_
Out[249]: False
In [250]: np.str_ == dtype
Out[250]: False
To check if a Series contains Categorical data, use hasattr(s, 'cat')
:
In [251]: hasattr(pd.Series(["a"], dtype="category"), "cat")
Out[251]: True
In [252]: hasattr(pd.Series(["a"]), "cat")
Out[252]: False
Using NumPy functions on a Series
of type category
should not work as Categoricals
are not numeric data (even in the case that .categories
is numeric).
In [253]: s = pd.Series(pd.Categorical([1, 2, 3, 4]))
In [254]: try:
.....: np.sum(s)
.....: except TypeError as e:
.....: print("TypeError:", str(e))
.....:
TypeError: 'Categorical' does not implement reduction 'sum'
Note
If such a function works, please file a bug at https://github.com/pandas-dev/pandas!
dtype in apply¶
pandas currently does not preserve the dtype in apply functions: If you apply along rows you get
a Series
of object
dtype
(same as getting a row -> getting one element will return a
basic type) and applying along columns will also convert to object. NaN
values are unaffected.
You can use fillna
to handle missing values before applying a function.
In [255]: df = pd.DataFrame(
.....: {
.....: "a": [1, 2, 3, 4],
.....: "b": ["a", "b", "c", "d"],
.....: "cats": pd.Categorical([1, 2, 3, 2]),
.....: }
.....: )
.....:
In [256]: df.apply(lambda row: type(row["cats"]), axis=1)
Out[256]:
0 <class 'int'>
1 <class 'int'>
2 <class 'int'>
3 <class 'int'>
dtype: object
In [257]: df.apply(lambda col: col.dtype, axis=0)
Out[257]:
a int64
b object
cats category
dtype: object
Categorical index¶
CategoricalIndex
is a type of index that is useful for supporting
indexing with duplicates. This is a container around a Categorical
and allows efficient indexing and storage of an index with a large number of duplicated elements.
See the advanced indexing docs for a more detailed
explanation.
Setting the index will create a CategoricalIndex
:
In [258]: cats = pd.Categorical([1, 2, 3, 4], categories=[4, 2, 3, 1])
In [259]: strings = ["a", "b", "c", "d"]
In [260]: values = [4, 2, 3, 1]
In [261]: df = pd.DataFrame({"strings": strings, "values": values}, index=cats)
In [262]: df.index
Out[262]: CategoricalIndex([1, 2, 3, 4], categories=[4, 2, 3, 1], ordered=False, dtype='category')
# This now sorts by the categories order
In [263]: df.sort_index()
Out[263]:
strings values
4 d 1
2 b 2
3 c 3
1 a 4
Side effects¶
Constructing a Series
from a Categorical
will not copy the input
Categorical
. This means that changes to the Series
will in most cases
change the original Categorical
:
In [264]: cat = pd.Categorical([1, 2, 3, 10], categories=[1, 2, 3, 4, 10])
In [265]: s = pd.Series(cat, name="cat")
In [266]: cat
Out[266]:
[1, 2, 3, 10]
Categories (5, int64): [1, 2, 3, 4, 10]
In [267]: s.iloc[0:2] = 10
In [268]: cat
Out[268]:
[10, 10, 3, 10]
Categories (5, int64): [1, 2, 3, 4, 10]
In [269]: df = pd.DataFrame(s)
In [270]: df["cat"].cat.categories = [1, 2, 3, 4, 5]
In [271]: cat
Out[271]:
[10, 10, 3, 10]
Categories (5, int64): [1, 2, 3, 4, 10]
Use copy=True
to prevent such a behaviour or simply don’t reuse Categoricals
:
In [272]: cat = pd.Categorical([1, 2, 3, 10], categories=[1, 2, 3, 4, 10])
In [273]: s = pd.Series(cat, name="cat", copy=True)
In [274]: cat
Out[274]:
[1, 2, 3, 10]
Categories (5, int64): [1, 2, 3, 4, 10]
In [275]: s.iloc[0:2] = 10
In [276]: cat
Out[276]:
[1, 2, 3, 10]
Categories (5, int64): [1, 2, 3, 4, 10]
Note
This also happens in some cases when you supply a NumPy array instead of a Categorical
:
using an int array (e.g. np.array([1,2,3,4])
) will exhibit the same behavior, while using
a string array (e.g. np.array(["a","b","c","a"])
) will not.