pandas.
array
Create an array.
New in version 0.24.0.
The scalars inside data should be instances of the scalar type for dtype. It’s expected that data represents a 1-dimensional array of data.
When data is an Index or Series, the underlying array will be extracted from data.
The dtype to use for the array. This may be a NumPy dtype or an extension type registered with pandas using pandas.api.extensions.register_extension_dtype().
pandas.api.extensions.register_extension_dtype()
If not specified, there are two possibilities:
When data is a Series, Index, or ExtensionArray, the dtype will be taken from the data.
Series
Index
ExtensionArray
Otherwise, pandas will attempt to infer the dtype from the data.
Note that when data is a NumPy array, data.dtype is not used for inferring the array type. This is because NumPy cannot represent all the types of data that can be held in extension arrays.
data.dtype
Currently, pandas will infer an extension dtype for sequences of
Scalar Type
Array Type
pandas.Interval
pandas.arrays.IntervalArray
pandas.Period
pandas.arrays.PeriodArray
datetime.datetime
pandas.arrays.DatetimeArray
datetime.timedelta
pandas.arrays.TimedeltaArray
int
pandas.arrays.IntegerArray
str
pandas.arrays.StringArray
bool
pandas.arrays.BooleanArray
For all other cases, NumPy’s usual inference rules will be used.
Changed in version 1.0.0: Pandas infers nullable-integer dtype for integer data, string dtype for string data, and nullable-boolean dtype for boolean data.
Whether to copy the data, even if not necessary. Depending on the type of data, creating the new array may require copying data, even if copy=False.
copy=False
The newly created array.
When data is not 1-dimensional.
See also
numpy.array
Construct a NumPy array.
Construct a pandas Series.
Construct a pandas Index.
arrays.PandasArray
ExtensionArray wrapping a NumPy array.
Series.array
Extract the array stored within a Series.
Notes
Omitting the dtype argument means pandas will attempt to infer the best array type from the values in the data. As new array types are added by pandas and 3rd party libraries, the “best” array type may change. We recommend specifying dtype to ensure that
the correct array type for the data is returned
the returned array type doesn’t change as new extension types are added by pandas and third-party libraries
Additionally, if the underlying memory representation of the returned array matters, we recommend specifying the dtype as a concrete object rather than a string alias or allowing it to be inferred. For example, a future version of pandas or a 3rd-party library may include a dedicated ExtensionArray for string data. In this event, the following would no longer return a arrays.PandasArray backed by a NumPy array.
>>> pd.array(['a', 'b'], dtype=str) <PandasArray> ['a', 'b'] Length: 2, dtype: str32
This would instead return the new ExtensionArray dedicated for string data. If you really need the new array to be backed by a NumPy array, specify that in the dtype.
>>> pd.array(['a', 'b'], dtype=np.dtype("<U1")) <PandasArray> ['a', 'b'] Length: 2, dtype: str32
Finally, Pandas has arrays that mostly overlap with NumPy
arrays.DatetimeArray arrays.TimedeltaArray
arrays.DatetimeArray
arrays.TimedeltaArray
When data with a datetime64[ns] or timedelta64[ns] dtype is passed, pandas will always return a DatetimeArray or TimedeltaArray rather than a PandasArray. This is for symmetry with the case of timezone-aware data, which NumPy does not natively support.
datetime64[ns]
timedelta64[ns]
DatetimeArray
TimedeltaArray
PandasArray
>>> pd.array(['2015', '2016'], dtype='datetime64[ns]') <DatetimeArray> ['2015-01-01 00:00:00', '2016-01-01 00:00:00'] Length: 2, dtype: datetime64[ns]
>>> pd.array(["1H", "2H"], dtype='timedelta64[ns]') <TimedeltaArray> ['0 days 01:00:00', '0 days 02:00:00'] Length: 2, dtype: timedelta64[ns]
Examples
If a dtype is not specified, pandas will infer the best dtype from the values. See the description of dtype for the types pandas infers for.
>>> pd.array([1, 2]) <IntegerArray> [1, 2] Length: 2, dtype: Int64
>>> pd.array([1, 2, np.nan]) <IntegerArray> [1, 2, <NA>] Length: 3, dtype: Int64
>>> pd.array(["a", None, "c"]) <StringArray> ['a', <NA>, 'c'] Length: 3, dtype: string
>>> pd.array([pd.Period('2000', freq="D"), pd.Period("2000", freq="D")]) <PeriodArray> ['2000-01-01', '2000-01-01'] Length: 2, dtype: period[D]
You can use the string alias for dtype
>>> pd.array(['a', 'b', 'a'], dtype='category') ['a', 'b', 'a'] Categories (2, object): ['a', 'b']
Or specify the actual dtype
>>> pd.array(['a', 'b', 'a'], ... dtype=pd.CategoricalDtype(['a', 'b', 'c'], ordered=True)) ['a', 'b', 'a'] Categories (3, object): ['a' < 'b' < 'c']
If pandas does not infer a dedicated extension type a arrays.PandasArray is returned.
>>> pd.array([1.1, 2.2]) <PandasArray> [1.1, 2.2] Length: 2, dtype: float64
As mentioned in the “Notes” section, new extension types may be added in the future (by pandas or 3rd party libraries), causing the return value to no longer be a arrays.PandasArray. Specify the dtype as a NumPy dtype if you need to ensure there’s no future change in behavior.
>>> pd.array([1, 2], dtype=np.dtype("int32")) <PandasArray> [1, 2] Length: 2, dtype: int32
data must be 1-dimensional. A ValueError is raised when the input has the wrong dimensionality.
>>> pd.array(1) Traceback (most recent call last): ... ValueError: Cannot pass scalar '1' to 'pandas.array'.