Series.
rpow
Return Exponential power of series and other, element-wise (binary operator rpow).
Equivalent to other ** series, but with support to substitute a fill_value for missing data in either one of the inputs.
other ** series
Fill existing missing (NaN) values, and any new element needed for successful Series alignment, with this value before computation. If data in both corresponding Series locations is missing the result of filling (at that location) will be missing.
Broadcast across a level, matching Index values on the passed MultiIndex level.
The result of the operation.
See also
Series.pow
Element-wise Exponential power, see Python documentation for more details.
Examples
>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.pow(b, fill_value=0) a 1.0 b 1.0 c 1.0 d 0.0 e NaN dtype: float64