DataFrameGroupBy.
corr
Compute pairwise correlation of columns, excluding NA/null values.
Method of correlation:
pearson : standard correlation coefficient
kendall : Kendall Tau correlation coefficient
spearman : Spearman rank correlation
and returning a float. Note that the returned matrix from corr will have 1 along the diagonals and will be symmetric regardless of the callable’s behavior.
New in version 0.24.0.
Minimum number of observations required per pair of columns to have a valid result. Currently only available for Pearson and Spearman correlation.
Correlation matrix.
See also
DataFrame.corrwith
Series.corr
Examples
>>> def histogram_intersection(a, b): ... v = np.minimum(a, b).sum().round(decimals=1) ... return v >>> df = pd.DataFrame([(.2, .3), (.0, .6), (.6, .0), (.2, .1)], ... columns=['dogs', 'cats']) >>> df.corr(method=histogram_intersection) dogs cats dogs 1.0 0.3 cats 0.3 1.0