pandas.arrays.
IntegerArray
Array of integer (optional missing) values.
New in version 0.24.0.
Changed in version 1.0.0: Now uses pandas.NA as the missing value rather than numpy.nan.
pandas.NA
numpy.nan
Warning
IntegerArray is currently experimental, and its API or internal implementation may change without warning.
We represent an IntegerArray with 2 numpy arrays:
data: contains a numpy integer array of the appropriate dtype
mask: a boolean array holding a mask on the data, True is missing
To construct an IntegerArray from generic array-like input, use pandas.array() with one of the integer dtypes (see examples).
pandas.array()
See Nullable integer data type for more.
A 1-d integer-dtype array.
A 1-d boolean-dtype array indicating missing values.
Whether to copy the values and mask.
Examples
Create an IntegerArray with pandas.array().
>>> int_array = pd.array([1, None, 3], dtype=pd.Int32Dtype()) >>> int_array <IntegerArray> [1, <NA>, 3] Length: 3, dtype: Int32
String aliases for the dtypes are also available. They are capitalized.
>>> pd.array([1, None, 3], dtype='Int32') <IntegerArray> [1, <NA>, 3] Length: 3, dtype: Int32
>>> pd.array([1, None, 3], dtype='UInt16') <IntegerArray> [1, <NA>, 3] Length: 3, dtype: UInt16
Attributes
None
Methods