CategoricalIndex.
map
Map values using input correspondence (a dict, Series, or function).
Maps the values (their categories, not the codes) of the index to new categories. If the mapping correspondence is one-to-one the result is a CategoricalIndex which has the same order property as the original, otherwise an Index is returned.
CategoricalIndex
Index
If a dict or Series is used any unmapped category is mapped to NaN. Note that if this happens an Index will be returned.
Series
Mapping correspondence.
Mapped index.
See also
Index.map
Apply a mapping correspondence on an Index.
Series.map
Apply a mapping correspondence on a Series.
Series.apply
Apply more complex functions on a Series.
Examples
>>> idx = pd.CategoricalIndex(['a', 'b', 'c']) >>> idx CategoricalIndex(['a', 'b', 'c'], categories=['a', 'b', 'c'], ordered=False, dtype='category') >>> idx.map(lambda x: x.upper()) CategoricalIndex(['A', 'B', 'C'], categories=['A', 'B', 'C'], ordered=False, dtype='category') >>> idx.map({'a': 'first', 'b': 'second', 'c': 'third'}) CategoricalIndex(['first', 'second', 'third'], categories=['first', 'second', 'third'], ordered=False, dtype='category')
If the mapping is one-to-one the ordering of the categories is preserved:
>>> idx = pd.CategoricalIndex(['a', 'b', 'c'], ordered=True) >>> idx CategoricalIndex(['a', 'b', 'c'], categories=['a', 'b', 'c'], ordered=True, dtype='category') >>> idx.map({'a': 3, 'b': 2, 'c': 1}) CategoricalIndex([3, 2, 1], categories=[3, 2, 1], ordered=True, dtype='category')
If the mapping is not one-to-one an Index is returned:
>>> idx.map({'a': 'first', 'b': 'second', 'c': 'first'}) Index(['first', 'second', 'first'], dtype='object')
If a dict is used, all unmapped categories are mapped to NaN and the result is an Index:
>>> idx.map({'a': 'first', 'b': 'second'}) Index(['first', 'second', nan], dtype='object')