ma.
array
An array class with possibly masked values.
Masked values of True exclude the corresponding element from any computation.
Construction:
x = MaskedArray(data, mask=nomask, dtype=None, copy=False, subok=True, ndmin=0, fill_value=None, keep_mask=True, hard_mask=None, shrink=True, order=None)
Input data.
Mask. Must be convertible to an array of booleans with the same shape as data. True indicates a masked (i.e. invalid) data.
Data type of the output. If dtype is None, the type of the data argument (data.dtype) is used. If dtype is not None and different from data.dtype, a copy is performed.
dtype
data.dtype
Whether to copy the input data (True), or to use a reference instead. Default is False.
Whether to return a subclass of MaskedArray if possible (True) or a plain MaskedArray. Default is True.
MaskedArray
Minimum number of dimensions. Default is 0.
Value used to fill in the masked values when necessary. If None, a default based on the data-type is used.
Whether to combine mask with the mask of the input data, if any (True), or to use only mask for the output (False). Default is True.
Whether to use a hard mask or not. With a hard mask, masked values cannot be unmasked. Default is False.
Whether to force compression of an empty mask. Default is True.
Specify the order of the array. If order is ‘C’, then the array will be in C-contiguous order (last-index varies the fastest). If order is ‘F’, then the returned array will be in Fortran-contiguous order (first-index varies the fastest). If order is ‘A’ (default), then the returned array may be in any order (either C-, Fortran-contiguous, or even discontiguous), unless a copy is required, in which case it will be C-contiguous.
Examples
The mask can be initialized with an array of boolean values with the same shape as data.
mask
data
>>> data = np.arange(6).reshape((2, 3)) >>> np.ma.MaskedArray(data, mask=[[False, True, False], ... [False, False, True]]) masked_array( data=[[0, --, 2], [3, 4, --]], mask=[[False, True, False], [False, False, True]], fill_value=999999)
Alternatively, the mask can be initialized to homogeneous boolean array with the same shape as data by passing in a scalar boolean value:
>>> np.ma.MaskedArray(data, mask=False) masked_array( data=[[0, 1, 2], [3, 4, 5]], mask=[[False, False, False], [False, False, False]], fill_value=999999)
>>> np.ma.MaskedArray(data, mask=True) masked_array( data=[[--, --, --], [--, --, --]], mask=[[ True, True, True], [ True, True, True]], fill_value=999999, dtype=int64)
Note
The recommended practice for initializing mask with a scalar boolean value is to use True/False rather than np.True_/np.False_. The reason is nomask is represented internally as np.False_.
True
False
np.True_
np.False_
nomask
>>> np.False_ is np.ma.nomask True
numpy.ma