numpy.ma.masked_object¶
-
numpy.ma.
masked_object
(x, value, copy=True, shrink=True)[source]¶ Mask the array x where the data are exactly equal to value.
This function is similar to
masked_values
, but only suitable for object arrays: for floating point, usemasked_values
instead.- Parameters
- xarray_like
Array to mask
- valueobject
Comparison value
- copy{True, False}, optional
Whether to return a copy of x.
- shrink{True, False}, optional
Whether to collapse a mask full of False to nomask
- Returns
- resultMaskedArray
The result of masking x where equal to value.
See also
masked_where
Mask where a condition is met.
masked_equal
Mask where equal to a given value (integers).
masked_values
Mask using floating point equality.
Examples
>>> import numpy.ma as ma >>> food = np.array(['green_eggs', 'ham'], dtype=object) >>> # don't eat spoiled food >>> eat = ma.masked_object(food, 'green_eggs') >>> eat masked_array(data=[--, 'ham'], mask=[ True, False], fill_value='green_eggs', dtype=object) >>> # plain ol` ham is boring >>> fresh_food = np.array(['cheese', 'ham', 'pineapple'], dtype=object) >>> eat = ma.masked_object(fresh_food, 'green_eggs') >>> eat masked_array(data=['cheese', 'ham', 'pineapple'], mask=False, fill_value='green_eggs', dtype=object)
Note that mask is set to
nomask
if possible.>>> eat masked_array(data=['cheese', 'ham', 'pineapple'], mask=False, fill_value='green_eggs', dtype=object)