numpy.ma.masked_where¶
-
numpy.ma.
masked_where
(condition, a, copy=True)[source]¶ Mask an array where a condition is met.
Return a as an array masked where condition is True. Any masked values of a or condition are also masked in the output.
- Parameters
- conditionarray_like
Masking condition. When condition tests floating point values for equality, consider using
masked_values
instead.- aarray_like
Array to mask.
- copybool
If True (default) make a copy of a in the result. If False modify a in place and return a view.
- Returns
- resultMaskedArray
The result of masking a where condition is True.
See also
masked_values
Mask using floating point equality.
masked_equal
Mask where equal to a given value.
masked_not_equal
Mask where not equal to a given value.
masked_less_equal
Mask where less than or equal to a given value.
masked_greater_equal
Mask where greater than or equal to a given value.
masked_less
Mask where less than a given value.
masked_greater
Mask where greater than a given value.
masked_inside
Mask inside a given interval.
masked_outside
Mask outside a given interval.
masked_invalid
Mask invalid values (NaNs or infs).
Examples
>>> import numpy.ma as ma >>> a = np.arange(4) >>> a array([0, 1, 2, 3]) >>> ma.masked_where(a <= 2, a) masked_array(data=[--, --, --, 3], mask=[ True, True, True, False], fill_value=999999)
Mask array b conditional on a.
>>> b = ['a', 'b', 'c', 'd'] >>> ma.masked_where(a == 2, b) masked_array(data=['a', 'b', --, 'd'], mask=[False, False, True, False], fill_value='N/A', dtype='<U1')
Effect of the
copy
argument.>>> c = ma.masked_where(a <= 2, a) >>> c masked_array(data=[--, --, --, 3], mask=[ True, True, True, False], fill_value=999999) >>> c[0] = 99 >>> c masked_array(data=[99, --, --, 3], mask=[False, True, True, False], fill_value=999999) >>> a array([0, 1, 2, 3]) >>> c = ma.masked_where(a <= 2, a, copy=False) >>> c[0] = 99 >>> c masked_array(data=[99, --, --, 3], mask=[False, True, True, False], fill_value=999999) >>> a array([99, 1, 2, 3])
When condition or a contain masked values.
>>> a = np.arange(4) >>> a = ma.masked_where(a == 2, a) >>> a masked_array(data=[0, 1, --, 3], mask=[False, False, True, False], fill_value=999999) >>> b = np.arange(4) >>> b = ma.masked_where(b == 0, b) >>> b masked_array(data=[--, 1, 2, 3], mask=[ True, False, False, False], fill_value=999999) >>> ma.masked_where(a == 3, b) masked_array(data=[--, 1, --, --], mask=[ True, False, True, True], fill_value=999999)