Previous topic

numpy.fabs

Next topic

numpy.heaviside

numpy.sign

numpy.sign(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'sign'>

Returns an element-wise indication of the sign of a number.

The sign function returns -1 if x < 0, 0 if x==0, 1 if x > 0. nan is returned for nan inputs.

For complex inputs, the sign function returns sign(x.real) + 0j if x.real != 0 else sign(x.imag) + 0j.

complex(nan, 0) is returned for complex nan inputs.

Parameters:
x : array_like

Input values.

out : ndarray, None, or tuple of ndarray and None, optional

A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs.

where : array_like, optional

Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone.

**kwargs

For other keyword-only arguments, see the ufunc docs.

Returns:
y : ndarray

The sign of x. This is a scalar if x is a scalar.

Notes

There is more than one definition of sign in common use for complex numbers. The definition used here is equivalent to x/\sqrt{x*x} which is different from a common alternative, x/|x|.

Examples

>>> np.sign([-5., 4.5])
array([-1.,  1.])
>>> np.sign(0)
0
>>> np.sign(5-2j)
(1+0j)